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Abstract
We find that characteristics of quantum tunnelling in the presence of chaos
can be regarded as a manifestation of the Julia set of the complex dynamical
system. Several numerical pieces of evidence for the standard map, together
with a rigorous statement for the Hénon map, are presented, demonstrating that
the complex classical paths which contribute to the semiclassical propagator
are dense in the Julia set. Chaotic tunnelling can thus be characterized by the
transitivity of the dynamics and high density of the trajectories on the Julia set.

PACS numbers: 03.65.−w, 05.45.−a

Recent studies on tunnelling in multidimensions have revealed that the existence of chaos
affects the signature of quantum tunnelling. The observation of purely quantum mechanical
calculation in chaotic systems shows that tunnelling can become chaotic or chaos seems to
assist tunnelling [1–11]. The idea capturing such a novel aspect of tunnelling appears very
attractive, but a direct connection between chaos and tunnelling can only be accomplished by
interpreting the quantum phenomenon by the trajectory of the classical dynamics [6–8,10,11].
When one is particularly interested in the tunnelling process, the use of complex trajectories is
essential since the transition due to tunnelling occurs where the real-valued classical trajectories
cannot reach.

The best known technique using the complex space is the so-called instanton method
in which the tunnelling penetration is evaluated mainly by a single classical path moving
on the reversed potential [12, 13]. On the other hand, in chaotic systems, it has been found
in the time-domain semiclassical analysis that a bunch of complex paths contribute almost
equally to the tunnelling transition between classically forbidden regions [10, 11]. They
typically form a treelike fractal structure in the complex initial-value plane, and its outstanding
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appearance compels us to prepare some concept which controls dominating complex paths
in the semiclassical sum of contributing candidates [10, 11]. All the characteristic structures
appearing in the tunnelling wavefunction in chaotic systems originate from it.

However, the Laputa chain, which was so introduced in [10,11], is still phenomenological
so far, and even remains mysterious if no link to some concept compatible with the dynamical
system theory is made. One may thus naturally ask why such a structure plays a special role in
the complex trajectory description of chaotic tunnelling, and what sort of mechanism underlies
such conspicuous objects in the complex plane. The purpose of this letter is to provide a clear
answer to these questions. Our final claim is simple and would be rather natural: the Julia set
is the origin of chaotic tunnelling.

Let us begin by introducing the model system we are concerned with. The system we
study here is a family of two-dimensional area preserving maps, in which the mixed phase
space is realized in a certain range of the parameter space. The time evolution of the phase
point (p, θ) is given as the mapping rule as

(pn+1, θn+1) = F(pn, θn) ≡ (H ′(pn) − V ′(θn), θn + H ′(pn) − V ′(θn)). (1)

Here, H(p) = p2/2 and V (θ) = K sin θ are the most standard choice, but suitable
modification or replacement of the kinetic or the potential term is sometimes helpful and
will be made according to the target of the analysis.

Since the map model does not have the energy as the Hamiltonian flow problem
does, one cannot consider the tunnelling through the energetic barrier, which may be a
normal setting of the tunnelling problem. Instead, dynamical confinement due to classically
disconnected components such as KAM tori and chaotic components in the phase space plays
the role of barriers, and the quantum transition between such invariant regions is regarded as
tunnelling [14].

At least in the first setting of the problem, it is not at all obvious that several different
situations, such as the tunnelling transition out of the quasiperiodic region into some chaotic
component, or its reverse process, or that between different chaotic components, could be
treated on the same footing. However, as will be described below and as will also become one
of the most important points in this letter, the choice of initial and final states does not matter
to the whole story.

Typical quantum mechanical wavefunctions in the mixed phase space are displayed in
figure 1. In both models, the tails of the wavefunctions do not monotonically decay even in
the tunnelling regime; rather there appear several unexpected structures: the crossovers of the
slope, the plateau regions and irregular interference patterns on it. All these characteristics are
only qualitatively featured [10,11], but they are commonly observed not only in the dynamical
tunnelling problem, but also in the energetic barrier tunnelling [15].

The semiclassical approach, which is extensively developed in recent studies of quantum
chaos or quantum chaology [16], works quite well even when one employs it as a tool
describing the tunnelling process. Apart from an added technical (but sometimes crucial)
problem originating from the Stokes phenomenon [17], which we do not enter into details of
here, our task in the semiclassical analysis is essentially the same as the real one, that is, to
evaluate the Van-Vleck propagator:

n(p0, pn) ≈
∑
p0=α

pn=β

An(p0, θ0) exp

{
− i

h̄
Sn(p0, θ0)

}
, (2)

where the summation is taken for all (p0, θ0) which satisfy the boundary conditions for the
initial momentum p0 = α and the final momentum pn = β. Here, Sn(p0, θ0) = ∑n

j=1
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Figure 1. Quantum (full curve) and semiclassical (dashed curve) wavefunction for (a) the model
with H0(p) = (p2/2)(p/pd)

6/[(p/pd)
6 + 1] + ωp and V (θ) = K sin θ , where pd = 5, ω = 2

and K = 1.2, and (b) the model with H0(p) = p2/2 and V (θ) = K sin θ , where K = 1.5. In both
cases, the initial wavepacket is set as (p) = δ(p). The real-valued classical orbits cannot reach
the region outside the dashed lines within the time step taken here (n = 6 for (a) and 5 for (b)).
The semiclassical wavefunction is shifted in order to clarify the structure.

[H(θj ) − V (θj ) + θj (pj − pj+1)] is the action along a classical trajectory, and An(p0, θ0) =
[2πh̄(∂pn/∂θ0)p0 ]−

1
2 represents the amplitude factor associated with its stability.

Since we here take the p-representation, p0 should be a real quantity. So, the canonical
partner θ0 may be used to identify the (complexified) trajectories contributing to the sum (2),
and it is then allowed to be complex as θ0 = ξ + iη (ξ, η real). We visualize the contributing
complex paths by displaying the set [10, 11]:

Mn ≡
⋃
β∈R

M∗,β
n =

⋃
β∈R

{(p, θ) ∈ C
2 | pn = β} (3)

on the θ0-plane of the slice {p0 = α} for some initial condition α ∈ R. The set Mn on
the θ0-plane, which usually looks like clouds or a wisteria trellis on a macroscopic scale, is
decomposed into finer and finer structures as it is magnified [10,11]. One can see that its basic
element is a string with various scales. Each string represents a trajectory appearing in the
semiclassical sum (2). We note that in the integrable limit only the branches connected with
the real plane (i.e. η = 0) survive and all other complicated objects disappear [10, 11].

A huge number of candidate paths may discourage us since it appears to be no longer
possible to establish a simple view of tunnelling in the presence of chaos. However, among
all possible candidates the complex paths forming a sequential structure, which runs in the
vertical direction at the centre of figure 2(a) and is clearly discernible from the other aggregated
strings, exceed any other candidate paths in amplitude. We have called such a characteristic
structure the Laputa chain [10,11]. As shown in figure 1, one finds that the semiclassical sum
including only such complex paths as contained in the Laputa chains has reproduced almost
all details of tunnelling into chaotic regions. Our task is, therefore, reduced to clarifying what
this marked structure appearing in the initial-value plane represents.

The reason why some complex paths dominate the others in the semiclassical sum (2) is,
in general, that the imaginary parts of their action, Im Sn(p0, θ0), are relatively small. This
is because the absolute value of each term in (2) is mainly governed by Im Sn(p0, θ0), rather
than the amplitude factor An(p0, θ0). This in turn means that the complex paths forming the
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Figure 2. (a) A magnification of the initial-value representation Mn on the θ0-plane in the
case of the standard map with K = 1.5 and n = 40. The range shown above is given
as 4.197 487 346 × 10−2 � ξ � 4.197 487 362 × 10−2, and 6.693 592 × 10−4 � η �
6.693 601 × 10−4. The initial momentum is set as p0 = 0. The Mn-set consists of a bunch
of self-similar objects, whose basic element is a string. Except for the central part, such strings are
so densely aggregated that individual strings cannot be resolved in this scale. However, magnifying
the black area, one can find a similar structure in the scale shown here, that is, the black area is
also composed of a bunch of string objects. Each string represents an individual component of
the semiclassical sum (2). The strings running in the vertical direction look as if they cross with
each other, but actually they avoid with very narrow gaps; that is, the strings form a serial chainlike
structure connected via narrow gaps. (b) The slice of K+ by {p0 = α}. This is numerically
obtained by plotting the initial points whose trajectories remain a ball in C

2 with a certain finite
radius, r = 103, in this case.

Laputa chain should gain small imaginary action as compared with the other paths not forming
the chain structure. Indeed, as shown later, the trajectories initially placed on the Laputa
chain approach the real (p, θ)-plane exponentially, which provides minimal or relatively small
imaginary action.

Conversely, one can say that this property characterizes the Laputa chain and makes these
paths distinguishable from the others. Furthermore, they are specific in that these trajectories
stay in bounded regions because after coming close to the real plane they almost follow the
behaviour of the trajectories on the real plane and the real orbits are all bounded in the present
situation.

This is a hint to link the Laputa chain to a proper object compatible with the theory of
dynamical systems, since the Julia set, which plays a central role in the complex dynamical
systems, is specified as the set satisfying such a property. More precisely, the forward Julia set
J + is defined as the boundary of the set K+ of points whose forward orbits remain in a finite
region [18]:

K+ = { (p, θ) | {Fn(p, θ)}n>0 is bounded } (4)

and

J + = ∂K+. (5)

A polynomial diffeomorphism like the Hénon map f , which is defined on C
2, has a polynomial

inverse, so both the forward and the backward iterations can be considered. In such a case
we define K+ (K−) as the set of points in C

2 whose forward (backward) orbits are bounded,
and J + (J−) to be the boundary of K+ (K−), which we call the forward (backward) Julia set.
The set J ≡ J + ∩ J− is called the Julia set of f . The forward (or backward) Julia set K± is
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where the orbits have sensitive dependence on initial conditions, which means that the chaotic
motion is realized on it.

Remarkably enough, such a purely mathematical object enters physics as quantum
tunnelling in chaos. Indeed, as shown in figure 2(b), the similarity between the chain-shaped
structure demonstrated in figure 2(a) and the slice ofK+ by the same plane is obvious. The slice
ofK+ shows a typical dendrite-like structure, which often appears in one-dimensional complex
dynamical systems [19]. The number of strings constituting the Laputa chain increases at an
exponential rate, so coincidence between them becomes better as the time proceeds [11, 23].
Note that the orbits put on the highly aggregated branches surrounding the Laputa chain do
not stay in a finite phase space domain but rapidly escape to infinity.

It is possible to provide a rigorous statement if one focuses on the cubic potential model
given by putting H(p) = p2/2 and V (θ) = cθ − θ3/3. The map (1) is transformed to a
standard form of the Hénon map,

f : (x, y) �−→ (y, y2 + (1 − c) − x), (6)

by the affine change of coordinate (p, θ) = (y−x, y−1). The Hénon map is known to be one
of the simplest nonlinear systems in two-dimensional space, and its dynamics is extensively
studied by several authors. Among them, investigation from the complex dynamical point of
view has been developed in the last decade (see, for example, [20–22] and references therein)
by using the pluripotential theory, the theory of currents etc.

As in the case of the standard map, it is reasonable to focus on the Im Sn(p0, θ0) of each
trajectory, but to be compatible with the invariant set of the dynamical system one should
consider the set of trajectories having the property described above in the limit of n going to
infinity. The most natural condition would be to select the complex orbits whose Im Sn(p0, θ0)

has a finite limit even when n goes to infinity. Such a filtering only serves as a necessary
condition for semiclassically contributing orbits, but it is at least true that the trajectories whose
Im Sn(p0, θ0) are divergent cannot contribute to the semiclassical summation since these orbits
either tend to zero in their magnitude or will be removed by the Stokes phenomenon [17].
Therefore we define the Laputa chains as

CLaputa ≡ {(p, θ) ∈ M∞
∣∣ Im Sn(p, θ) converges absolutely at (p, θ)}. (7)

In this definition M∞ is an object introduced to represent the limit of Mn-set when n goes to
infinity. More precisely,

M∞ ≡
⋃
β∈R

Mβ
∞, (8)

where Mβ
∞ is given as the Hausdorff limit of M∗,β

n ≡ {
(p, θ) ∈ C

2
∣∣ pn = β

}
(compare

equation (3)). Thus, the set M∞ corresponds to Mn for the time step ‘n = ∞’. It is possible
to prove that this Hausdorff limit itself contains the forward Julia set J + [11,23], which in itself
is a partial verification of our numerical observation. The following assertion concerning the
relation between CLaputa thus defined and J + is proved by the second-named author.

Theorem. Let F be the time-one map on C
2 associated with the kicked rotor (1) with

H(p) = p2/2 and V (θ) = cθ − θ3/3, and htop(F ) be the topological entropy with respect to
F ,

(i) If htop(F |R2) > 0, then CLaputa ⊃ J +.
(ii) If F is hyperbolic on J and htop(F |R2) > 0, then CLaputa = J +.

(iii) If F is hyperbolic on J and htop(F |R2) = log 2, then CLaputa = J +.
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Figure 3. (a) The distance from the real plane as a function of time is displayed for the orbits whose
initial conditions are put on the Laputa chains. The solid curve denote the case of the standard
map. The dotted and broken curves are those for the Hénon map. When the Julia set J exists only
on the real plane, the orbits always approach the real plane directly (dotted curve), but otherwise
the orbits first move around in C

2 space, and then approach the real plane (broken curve). (b), (c)
The set

⋃
β<β0

M∗,β
n (β0 = 1010) for the Hénon map is shown as the solid curves in the case of (b)

n = 9 and (c) n = 10. The slice of J + by {p = α} is shown as the dots in each figure.

Here X indicates the closure of the set X. The rough sketch of the proof is as
follows [11, 23]: that htop(F |R2) > 0 implies the existence of a saddle periodic point X
in the real phase space. A principal tool we shall employ is the following result, which was
established by Bedford and Smillie [20–22]. For a complex one-dimensional locally closed
submanifold M in either J + or an algebraic variety, there is a constant c > 0 so that

lim
n→+∞

1

2n
[f −nM] = c · ddcG+ (9)

in the sense of current, where [M] is the current of integration of M , i.e. [M](φ) ≡ ∫
M
φ|M ,

and ddc is the complex Laplacian. In this statement, G+ represents the Green function for K+

given by

G+(x, y) ≡ lim
n→+∞

1

2n
log+

∥∥f n(x, y)
∥∥ . (10)

It is easily shown that the support of µ+ coincides with J +. From this theorem we see that the
stable manifold of any periodic saddle p is dense in J +, that is, (Ws(p)) = J +. Using this
result, together with the fact that the Hausdorff limit M∞ contains J +, we obtain the desired
claim.

This claim gives a mathematical verification of the observation found numerically. Indeed,
as shown in figure 3(a), the trajectories leaving the Laputa chains approach exponentially the
real (p, θ)-plane. This makes Im Sn(p0, θ0) converge absolutely. As a demonstration of the
theorem, we show in figures 3(b) and (c) the set

⋃
β<β0

M∗,β
n for a fixed β0 and the slice of J +

by {p0 = α} for the Hénon map. One can see how the Mn-set shrinks to the J + as a function
of n.

Notice that the assumption htop(F |R2) > 0 in the above theorem is a mathematical
expression which corresponds to the fact that the underlying classical dynamicsF |R2 is chaotic.
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We also note that the slice of the forward Julia set J + by {p = α} can be shown to have positive
capacity for any initial condition α ∈ R. Thus, the theorem above suggests that, unlike the
instanton solutions in the integrable case, a bunch of paths in C

2 contributes to the tunnelling
phenomena if the underlying classical mechanics is chaotic.

It should be noted that the assumption in (i) covers the system with mixed phase space,
which is the most generic situation in physics. In addition, the physical implication or
interpretation of another theorem of Bedford and Smillie [20–22] on the transitivity of the
dynamics is suggestive in our problem. It states that for any C

2-neighbourhoods of any
two points in the chaotic regions there is an orbit in C

2 connecting them, even in the case
where the chaotic regions in the real plane are mutually disjointed by KAM tori. This property
exactly guarantees the transition between any disconnected regions on the real-valued classical
dynamics, and non-zero tunnelling amplitude of the wavefunction in arbitrary regions is always
realized due to the transitivity on the Julia set.

In this way, with the help of strong mathematical claims, which could be established
only by extending the dynamics to the complex space, we can clearly understand the reasons
why chaos seems to assist tunnelling and can become chaotic; these can be attributed to such
high density of the tunnelling paths in J + and the transitivity of the complexified dynamics.
So far, the structure of the Julia set has been an object which mainly attracts the interest of
mathematicians, but the present result implies that the Julia set is really observable as chaotic
tunnelling in various physical and chemical phenomena.
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